

TECHNICAL DATA SHEET

DYNAMASK® 5000 SERIES DRY FILM SOLDER MASK

DESCRIPTION – Revised 5/16/2018

DYNAMASK[®] **5000 SERIES DRY FILM SOLDER MASK** is an aqueous processable dry film photopolymer solder mask utilising epoxy chemistry materials well known for their electrical insulation, chemical resistance and dimensional stability properties.

PHYSICAL CHARACTERISTICS

DYNAMASK[®] **5000** series DFSM is a solvent-free, transparent, high gloss forest green material supplied in roll form. The photopolymer layer is coated as a defect free film and is available in 1.6mil ($40\mu m$), 3.0mil ($75\mu m$) and 4.0mil ($100\mu m$) thicknesses. Product designations are D5016, D5030 and D5040 respectively.

PRODUCT CHARACTERISTICS

- Excellent resolution capability
- ♣ Low light bleed characteristics
- ✤ Scratch resistant flexible film which improves via hole tenting integrity
- Wide process latitude
- Compatible with No clean and aqueous based fluxes and solder pastes

In addition, **DYNAMASK[®] 5000** series DFSM meets or exceeds requirements of IPC-SM-840E as indicated in the addendum.

DYNAMASK[®] **5000** series DFSM is recommended for use on rigid printed circuit boards, epoxy or polyimide laminates and performs well on a variety of metallic surfaces such as copper, tin-lead, nickel and gold and also on silicon wafer substrates. The product is not recommended for use on flexible circuits. The product is compatible with most soldering operations such as Hot air solder levelling, wave soldering, vapour phase and infra red soldering. The product will withstand most solvent and aqueous defluxing media.

PROCESSING

PROCESSING ENVIRONMENT

DYNAMASK[®] **5000** series DFSM is a negative working photo-polymer and is sensitive to ultra violet light, excessive temperature and relative humidity. Lamination and exposure steps should be conducted in a controlled yellow room environment under the following guidelines:

- Yellow room lighting
- Temperature controlled at 20 to 22°C (68 to 72°F)
- 🔸 Relative humidity controlled at 40 to 60%

PROCESS SEQUENCE:

DYNAMASK[®] 5000 series DFSM processing sequence is shown schematically below:

SURFACE PREPARATION

Pre-cleaning of the circuit board is essential to the adhesion of the solder resist and the electrical performance of the solder resist and the electrical performance of the printed circuit board. Any moisture and / or organic contaminants trapped by the solder resist during lamination may cause solder mask delamination, blistering and / or adhesion loss during subsequent soldering operations or during extended use.

When cleaning copper circuitry which has been produced using a metallic etch process, it is important to remove all inter-metallic compounds, oxides, organic and ionic contaminants. An abrasive scrub is necessary to provide a rough surface for the resist to adhere. The presence of contaminants or the elimination of the abrasive scrub step may cause adhesion loss. Good drying is essential to prevent the solder mask blistering during hot air solder levelling. One method which has proven successful for pre-cleaning copper circuitry is as follows:

- 1. Conveyorised acid spray rinse (5% H₂SO₄)
- 2. Water spray rinse
- 3. Pumice (3F / 4F) or impregnated brush (320grit) scrub

DYNAMASK 5000

- 4. High pressure water spray rinse
- 5. DI water spray rinse
- 6. Turbine dry
- 7. Bake dry for 30-minutes at 71 to 82°C (160 to 180°F)
- 8. Maximum hold time from pre-clean to lamination 4 hours. Ideally substrates should go directly to the laminating area to avoid the risk of contamination.

When cleaning fused tin-lead circuitry and other melting metals for which abrasive scrubbing is not permitted, it is important to remove all oxides, organic contaminants and moisture prior to solder resist application.

One method which has proven successful for pre-cleaning such circuitry is as follows:

- 1. Conveyorised saponifying spray cleaner
- 2. Water spray rinse
- 3. DI water spray rinse
- 4. Turbine dry
- 5. Bake dry for 20 to 30-minutes at 110 to 130°C (230 to 265°F)
- 6. Maximum hold time from pre-clean to lamination 4 hours. Ideally panels should go directly to the laminating area to avoid the risk of contamination.

Chemical cleaning can also be used for surface preparation. Where chemical cleaning is the preferred option please consult your local Technical representative for more detailed information on associated products and processes. As stated drying substrates after surface preparation is important. Applying **DYNAMASK**[®] **5000** series DFSM to a board that has been improperly dried can result in both general adhesion loss and also hole tenting failure.

DYNAMASK[®] **5000** series DFSM is available in thicknesses of 1.6mil ($40\mu m$), 3.0mil ($75\mu m$) and 4.0mil ($100\mu m$). The choice of solder mask thickness will depend on the PCB design geometries and height of the circuitry. As a general guideline the film thickness will encapsulate the same height conductor thickness. However it is possible to laminate circuit heights upto $65\mu m$ high with a $40\mu m$ thick resist. Likewise circuit heights of $100\mu m$ can be encapsulated with a $75\mu m$ resist and upto $125\mu m$ with the $100\mu m$ thick film.

VACUUM LAMINATION

DYNAMASK[®] **5000** series DFSM is best applied to the printed circuit board utilizing vacuum lamination equipment. Hot roll lamination is not recommended because of potential conformation and / or entrapment issues. Lamination of **DYNAMASK**[®] **5000** series DFSM should be performed in an environment that is free from dust and dirt. The condition and maintenance of the lamination equipment is very important to help achieve consistently high yields.

After **DYNAMASK**[®] **5000** series DFSM film is pre-tacked onto the substrate, it is placed in a vacuum applicator. During vacuum lamination, a hard vacuum is drawn within the lamination chamber assuring complete air removal between the circuit traces. Concurrently both the solder mask and the substrate are heated to laminating temperature. Once the vacuum cycle is complete, the upper platen blanket "slaps down" forming the initial physical bond between the solder mask and ensuring conformance of the solder mask to the circuitry.

Vacuum Lamination	
Cycle time	60-seconds (40 to 90-seconds)
Slap down time	6-seconds (4.0 to 12.0-seconds)
Platen temperature	55 to 65°C (130 to 150°F)
Panel temperature	49 to 60°C (120 to 140°F)
Vacuum	1.0mbars minimum
Free space	1.00 to 2.00mm (0.04 to 0.08 inches)

The **DYNAMASK**[®] **5000** series DFSM coating after polyester removal is soft and susceptible to damage. For this reason, substrates should be racked individually to prevent damage.

Exposure

DYNAMASK[®] **5000** series DFSM can be processed on a conventional non collimated light source. Allow substrates to cool to ambient temperature before exposure. It is preferable to expose substrates within two hours of lamination. Exposure time for proper polymerisation is a function of the type and intensity of the light source. The product is deigned to react in the spectral range of 350 to 450nm wavelength. Acceptable exposure levels can be achieved by using time and energy parameters that result in Clear metal step 09 to 11 when using a Stouffer[™] 21 step sensitivity guide. The energy requirement is normally in the range of 150 mj/cm².

DEVELOPMENT

DYNAMASK[®] **5000** series DFSM develops in a totally aqueous solution of sodium or potassium carbonate. Development is followed by thorough water rinsing, DI water rinsing and turbine dry in order to meet stringent ionic cleanliness requirements.

Development			
Equipment	Horizontal or vertical		
Chemistry	1.0% Na ₂ or K ₂ CO ₃		
Temperature	27 to 35°C (80 to 95°F)		
Breakpoint	40 to 50%		
Spray pressure	25 to 30psi		
Rinse chamber length	Minimum of 50% of developing chamber		
Spray pressure	25 to 30psi		
Rinse temperature	15 to 35°C (59 to 95°F)		
Turbine dry			

The operating temperature of the working solution is extremely important to the development of the resist. Exceeding the recommended temperature range can cause attack of the resist. Operating at a lower temperature can result in attack of the resist due to excessive dwell time in the developing chamber. The breakpoint should be maintained within the recommended range of the developing chamber length.

DYNAMASK[®] **5000** series DFSM may require the use of a de-foamer. This will depend on several factors including water quality, developer chemistry quality, dry film photo resist loading and equipment design. If antifoam additions are required, AF2750 has been tested and shown to be acceptable and compatible with **DYNAMASK**[®] **5000** series DFSM. Other anti-foams may be acceptable but these should be fully evaluated prior to use.

Anti-foam should be added according to the antifoam data sheet. Antifoam should be continuously added to the developer sump by means of a feed pump. Do not use antifoam products containing water miscible solvents as they will attack the dry film photo resist. Some petroleum based antifoams are also known to attack dry film photo resist and should be avoided.

CURING

Optimum physical, chemical, electrical, environmental and soldering performance properties of **DYNAMASK**[®] **5000** series DFSM are obtained only after final curing. Final curing (polymerisation) is a two step process involving both UV and thermal cross-linking, utilising conventional UV curing units and convection air ovens.

UV Curing			
Speed	2.40 to 3.65m/min (8.0 to 12.0ft/min)		
Energy	3.0 to 4.0J/cm2		
Panel temperature	121°C maximum (250°F)		
UV Cure side A	A at the above conditions		
Allow panels to cool completely to room temperature			
UV Cure side B at the above conditions			
UV cure process should be carried out before thermal cure process			
Thermal Curing			
Equipment	Forced air oven		
Time 60 minutes at temperature			
Temperature 145 to 155°C (293 to 310°F)			
Allow oven to reach temperature before the one hour timing starts			
Curing at temperatures above 155°C can result in adhesion loss especially on ground plane			
areas			

STORAGE

DYNAMASK 5000 series DFSM should be stored in a limited access area between 5 and 20°C (41 and 68°F) and 50 \pm 10% relative humidity. For optimum performance, store in an area not exceeding 15°C (60°F). **DYNAMASK 5000** series DFSM is sensitive to sunlight and indirect white light. Gold or yellow safelights are required in the immediate work area.

SAFETY AND HANDLING

BEFORE USING DYNAMASK[®] 5000 SERIES DFSM, PLEASE REFER TO THE CURRENT SAFETY DATA SHEET (SDS) FOR DETAILED SAFETY, HANDLING AND STORAGE INFORMATION.

DYNAMASK[®] **5000** series DFSM should be applied in a well ventilated area. Commercial lamination equipment may cause vapours to be generated from the dry film, and these should be removed by conventional exhaust techniques. It is the customer's responsibility to ensure that disposal of this and other ancillary products comply with local, state and national federal guidelines.

Wash thoroughly after handling any dry film resist. Contact of the unexposed resist with the skin may cause irritation and should be avoided. Sensitisation may occur in some individuals. If contact occurs, wash thoroughly with soap and water. If irritation occurs and persists consult a physician. Avoid reuse of or contact with the dry film release sheets and cover sheets as they may retain small amounts of unpolymerised photo resist components. During cleaning, developing, stripping and etching operations follow the safety precautions pertaining to the particular solution(s) being used.

LIMITED WARRANTY. Based on our experience, we believe that the above information is accurate, but we offer no guarantee as to the use or application of our products or of this information. We warrant our products to be free from defects in material and workmanship; but because their use is beyond our control, we accept no responsibility or liability for damages, whether direct, indirect or consequential, resulting from failure in performance. In cases where our products are found to be defective in material and workmanship, our liability is limited to the purchase price of the products found to be defective. THIS WARRANTY IS TO THE EXCLUSION OF ALL OTHER WARRANTIES OR GUARANTEES, EXPRESS OR IMPLIED, AS TO MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, DESCRIPTION, PRODUCTIVENESS OR ANY OTHER MATTER. None of the above information may be construed as a recommendation that our products be used in violation of any patent rights. We accept your orders at our shipping points only on the basis of the above understanding which our employees have no authority to vary.

DYNAMASK[®] is a registered trademark of Eternal Technology Corporation, Richmond, VA2007

Addendum

Mechanical, Electrical and Chemical Data for cured **DYNAMASK**[®] 5000 Series Dry Film Soldermask. Compliance with IPC Soldermask Specification IPC-SM-840(E) as indicated below. Testing is performed under generic conditions as specified and as understood by the manufacturer to generally represent conditions of production manufacture. This does not constitute a guarantee of performance in a specific application. Specific applications should be qualified by the fabricator or as agreed to by fabricator and end user (AABUS) as denoted in IPC SM-840E, including paragraphs 1.2, 3.2.2.1, 3.2.5.1 and 3.2.5.2.

Property	Test Method	Requirement	Value
Appearance	Visual	None	Dark green
			High gloss finish
Non-Nutrient	IPC TM 650	No support of,	No fungus growth or
(3.2.6)	2.6,1	contribution to or	corrosion.
		degradation by	
		biological growth	
Visual Requirements	IPC SM840E	Uniform in	Uniform. No
(3.3.1)	3.3	appearance and free	evidence of foreign
		of foreign matter,	matter,
		cracks, inclusions,	contamination,
		peeling and	cracks, peeling or
		roughness that would	roughness.
		interfere with	
		assembly or	
		operation of the PCB.	
Cure	IPC SM-840E	Meet requirement of	Pass
(3.2.5.1)	3.5 – 3.9	IPC SM840E 3.5 thru	See Physical,
		3.9.	Electrical &
			Environmental
			properties below.

Material properties - Cured film

Physical properties – Cured film

Property	Test Method	Requirement	Value
Pencil hardness	ASTM D-3363	F (minimum)	≧3H
(3.5.1)			
Adhesion to Rigid	IPC TM 650 2.4.28.1	0% Delamination.	3.7.2: 0%
Printed Boards	IPC SM -840E 3.5.2.1		Delamination
(3.5.2.1)			3.7.3: 0%
			Delamination
			(5016, 5030, 5040)
Adhesion of Layered	IPC TM 650 2.4.28.1	0% Delamination.	3.7.2: 0%
or Double Coated	IPC SM-840E 3.5.2.1		Delamination
Solder Mask			3.7.3: 0%
(3.5.2.6)			Delamination
			Layer
			1-DM5016/2-DM5030
			Layer
			1-DM5016/2-DM5040
Machinability	IPC TM 650 2.4.7.1	No Cracks, tears	Pass
(3.5.3)	IPC SM-840E 3.5.3	beyond base	
		laminate when	
		machined according	
		to IPC TM 650	
		2.4.7.1	

Electrical properties – Cured film

Property	Test Method	Requirement	Value
Dielectric Strength	IPC TM 650 2.5.6.1	500VDC/0.001";min.;	1.8KV/mil:
(3.8.1)		500 VDC if<0.001"	DM5030
			2.9KV/mil:
			DM5040
Insulation Resistance	IPC TM 650 2.6.3.1	Class T ≥ 500 M Ώ	≥ 4670 x 10 ⁴ M Ώ
(3.8.2)	SM-840E 3.2.5.1,	Class H ≥ 500 M Ώ	≥ 1340 x 10 ³ M Ώ
	3.7.2, 3.7.3		DM5030; DM5040

Soldering properties – Cured film

Property	Test Method	Requirement	Value
Solderability	IPC SM-840E 3.7.1	No soldermask	Pass
(3.7.1)		residues impeding	
		solderability	
Solder Resistance	SM 840E 3.7.2; 3.7.3	No solder adherence	Reference for
3.7.2/3.7.3	IPC TM 650 2.6.27	or residues.	SM-840E:
			3.5.2.1; 3.5.2.6;
			3.8.2; 3.9.3
Simulation of Lead	SM 840E 3.7.3	Solder shall not stick	Pass
Free Reflow	IPC TM 650 2.6.27	to the solder mask,	
(3.7.3.1)		no blistering	

Environmental properties – Cured film

Property	Test Method	Requirement	Value
Moisture &	IPC TM 650 2.6.3.1	Class T : \geq 500 M Ω	2100Κ Μ Ώ
Insulation Resistance		Class H: \geq 500 M Ω	3700 M Ώ
(3.9.1)			DM5030; DM5040
Electrochemical	IPC TM 650 2.6.14	Class T: No visual	Passed.
Migration		observation; $\leq 10' \Omega$	
(3.9.2)		(one decade)	
		Resistance drop.	
		Class H: No Visual	Passed. 26 M Ώ
		observation; > 2 M Ω	
		Resistance.	
Thermal Shock	IPC TM 650 2.6.7.3	No blistering, crazing	3.7.2: Passed.
(3.9.3)	SM 840E 3.3	or delamination.	3.7.3: Passed.
			DM5030; DM5040

Property	Test Method	Requirement	Value
Resistance to solvents and	IPC TM 650	No surface roughness,	
cleaning agent	2.3.42	swelling, tackiness,	
(3.6.1.1)		blistering and colour change	
		Isopropanol (RT.) >2mins	Pass
		75% isopropanol/25%	
		deionized water(44~48°C)	
		>15mins	Pass
		10% Alkaline detergent	
		(55~59℃)>2mins	Pass
		Monoethanolamine(55~59	
		°C) >2mins	Pass
		Deionized water(58~62 $^\circ$ C)	
		>5mins	Pass
		D-Limonene(RT.) >2mins	pass
Hydrolytic stability	IPC TM 650	No softening, chalking,	Pass
(3.6.2)	2.6.11	blisters, cracks, tackiness,	(> 28 days)
		delamination, liquification.	No evidence of
			Cu corrosion.
Flammability	UL-94	No increase in Base V	UL94 V-0:
(3.6.3)		number.	DM 5030 &
			5040 on 0.062
			FR-4
			UL94 V-1 on
			DM 5030 &
			5040 on 0.031
			FR-4.
			UL-94 IR
			Inspection
			maintained.
			File #E251137

Chemical resistance properties – Cured film (UL File No E251137)